JOURNAL OF COMPUTATIONAL PHYSICS J14, 146-159 (1994)

A Level Set Approach for Computing Solutions to
Incompressible Two-Phase Flow

MARK SUSSMAN, * PETER SMEREKA,' AND STANLEY OsHER?

Depariment of Mathematics, University of California, Los Angeles, California 90024-1555

Received July 6, 1993; revised Marcch 1, 1994

A leve! set approach for computing solutions to incompressible two-
phase flow is prasented. The interface between the two fluids is
considered to be sharp and (s described as the zero level set of 2 smooth
function. We use a second-order projection method which implements
a second-order upwinded procedure for differencing the convection
terms. A new treatment of the level set methed allows us to include
large density and viscosity ratios as well as surface tension. We consider
tha maotion of air bubbles in wataer and falling water drops in air.
€' 1994 Academic Piess, inc.

1. INTRODUCTION

A numerical method is developed for computing the
motion of incompressible two-phase flow. We will consider
immiscible fluids where steep gradients in density and
viscosity exist across the interface. Instead of explicitly
tracking the interface, we intend to implicitly “capture” the
interface using a level set approach. The interface will be
identified as the zero level sct of a smooth function.

As mentioned in [29], conventional conservative
schemes will incur excessive numerical diffusion which will
destroy the sharpness of the front. High order conservative
schemes can produce numerical oscillations around
the front. The approach presented in [ 29] was to track the
velocity using an Eulerian grid while explicitly tracking the
interface using a grid that moves through the stationary
grid. The investigators cited good results, but the algorithm
for tracking the front seems hard to implement. Complica-
tions occur when one needs to add or subtract points to the
moving grid. These problems are amplified when solving a
three dimensional problem.

In [ 271, a level set formulalion for moving interfaces was
mtroduced. The level set function is typically a smooth
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(Lipschitz continuous) function, dencted as ¢, which
eliminates the problems that conventional difference
schemes incur. This formulation also eliminates the problem
of adding/subtracting points to a moving grid and it
automatically takes care of merging and breaking of the
interface. Furthermore, the level set formulation generalizes
well 10 three dimensions. The actual front location never has
to be computed. Instead, the front is embedded as a
particular fevel set in 2 fixed domain PDE.

An application of the level set formulation was used in
[23] for compressible fluid flow. Examples from [23]
include Kelvin—Helmholtz instability and Rayleigh-Taylor
instability for helium and air. The density ratio was about
29 1o 4 and both gases were treated as perfect gases. These
investigators found it was best to initialize ¢ as the signed
distance from the front, thus eliminating steep gradients
from #. A second-order non-conservative ENO scheme was
used for solving the equation for ¢.

Instead of helium and air, we shali consider water and air.
The density ratio of water to air is about 1000 to [ and the
equation of state for water is not that of a perfect gas. One
can approximate the flow of water in the compressible
framework if one replaces pressure P with P+ B and y with
N. B and N are constants derived from the modified Tait
equation (see, for example, {9]}). For compressible flow
there would be a restriction put on the size of the time step
since the sound speed of water is about {ive times that of air
at sea level. In order to avoid this restriction, we wili solve
the problems involving water and air using the equations for
incompressible flow. This is a very good approximation as
long as the Muid velocitics are much smaller than the speed
of sound.

Incompressible flow algorithms that have been used to
track the interface of air/water problems include vortex
methods [ 17}, boundary integral methods [2], volume of
fluid methods [12, 15], front tracking methods [29], and
projection methods [ 5, 11, 18, 17]. We will use a projection
method similar to [ 57. If one combines the level set techni-
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ques of [ 27] with a projection method (see [ 33]), one can
avoid having to explicitly track the interface {hence the term
“front capturing™). Furthermore, one can us¢ higher order
upwinded methods for differencing the non-linear convec-
tive terms. These methods provide robust treaiment of
convective ierms at high Reynolds numbers [ 28, 32, 30, 141,

In this paper we shall also combine a level set technique
with a projection method. Our approach allows for large
density ratios (about 1000 to 1), surface tension, and jumps
in viscosity, while retaining a high order of aceuracy. The
important feature of our method is that we maintain our
level set function as a distance function for all time, without
reconstructing the interface. This prevents the interface from
ever changing thickness.

2. DESCRIPTION OF ALGORITHM

2.1. Equations of Motion

In our study we shall consider the fluid motion for rising
air bubbles in water and falling water drops in air. We shall
denote the density and viscosity inside the bubble (or drop)
by p, and u,, respectively, and for the continuous phase by
p.and g .. The equations of motion are given by the incom-
pressible Navier-Stokes equations

u,+(u-V)n=F+;1,-(—Vp+V-(2pD)+ax5(d)n) 1

V-u=0, {(2)
where u = (1, v} is the fluid velocity, p= p(x, 1) is the fluid
density, g =pu(x, t} is the {luid viscosity, D is the viscous
stress tensor, and F is a body force. The surface tension term
is constdered to be a force concentrated on the interface. We
denote o as the surface tension, x as the curvature of the
front, d as the normal distance to the front, J as the Dirac
delta function, and n as the unit outward normal vector at
the front. For immiscible liquids the density and viscosity
are constant on particle paths, therefore

2+ Vip=0 (3)

o+ u-V)u=0. (4)

We will assume solid wall boundaries with the free-slip
condition
un=0, (5)
where n is the normal vector at the boundary.
The initial radius of the bubble {or drop) is denoted as R

and the only body force we consider 15 gravity denoted as g.
After the non-dimensionalization of (1) we have
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u=—(u Vin+g,

1 1 1
- — — V. (2uD) + — kd(d
+p( Vp+Re (2u )+Bx( )n)

=Lu—Vp/p. (6)
The key parameters are p,/p., dimensionless density inside
the bubble; y, /1., dimensionless viscosity inside the bubble;
Re=(2R)*?./g p.juz., Reynolds number; and B=
4p. gR?%/o, Bond number, The dimensionless density and
viscosity outside the bubble are equal to 1. We have g,
represent a unit gravitational force.

2.2, Projection

From (6), we have u,= Lu—Vp/p. Let V= Lu. As noted
in [4, 11}, if the initial value problem for Eq. (6) is well
posed, then there exists a unique decomposition {Hodge
decomposition), where V=V _,4 ¥y and V, is divergence
free. Asin [5], we define a density weighted inner product
such that we can decompose V into ¥V and Vy/p. Given our
density weighted norm, we have V, L Vi/p. Given a vector
V, we define our projection operator as P (V}=V,. Since
the Hodge decomposition is unique and u, is divergence
free, we have u, =P (Lu). So, (6) and (2} are reduced to

u,=P,(Lu). {7)
In order to compute the projection, we take the curl of both
sides of the equation pV = pV _,+ Vi to obtain

Vx(pV)=Vx(pV,).

Given any divergence free vector V,, there exists a stream
function ¥ such that V,=Vx¥. Furthermore, in two
dimensions we have ¥ = (0, 0, ¥). The above equation can
now be written as
—V(pV¥}=Vx(pV) (8)

We consider problems obeying the free-slip condition (5);
hence ¥ =0 on the boundary.

2.3. Level Set Description

Since p and u change sharply at the front, conventional
finite difference schemes will incur excessive numerical diffu-
sion when solving (3) and (4). Instead, we shall use the level
set technique to “capture™ the interface as in [ 23, 33]. Our
level set function is denoted as ¢ and 1t is taken positive
outside the bubble and negative inside the bubble. There-
fore, the bubble interface is the zero level set of ¢. We
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shall initialize ¢ to be the signed normal distance from the
interface. Consider the following equation:

¢, +(u-V)pg=0.

This equation will move the zero level of ¢ exactly as the
actual bubble interface moves. Since ¢ 1s a smooth function,
unlike g or yu, the above equation is more easily solved
numerically. Therefore Eq. (3), {4), and (7) can be written
as

u =P, (Lu) (9)

¢,=—(u-V)¢ (10)
1 if ¢>0

p=APip. if ¢<0 (11)
1 if ¢>0

=S Halite if ¢<0 (12)
(up+u)/u) if ¢=0

We solve the above system in the domain
Q={(x,»)|0<x<TR, 0K y< TR},

where u obeys the free slip condition (5} on 902.

It should be noted that while ¢ is initially a distance
function it will not remain so. Furthermore, solutions of ¢
can develop a jump at the interface when interfaces merge.
Below we shall present a novel way of reinitializing ¢ so that
it remains a distance function.

2.4. Smoothing

Special care must be taken when resolving the discon-
tinuity in the equation for density at ¢ =0 and when
computing the delta function that appears in the surface
tension term.

If we use (11) for determining p{¢), the solution of the
elliptic system (8) will yield unwanted instabilities at the
interface; especially for large density ratios. A method was
propased in [20] for solving (8) with a discontinuous p.
Unfortunately, this method would require the solution of a
non-symmetric matrix and the method is difficult to imple-
ment. In order to prevent instabilities, we decided to smooth
p at the interface. We have the following equation for p(¢):

F={ppt+pM2p.)
Ap=(p.—ps)/(2p.)
1 if ¢>a

PlPe if ¢<—a
g+ Ap sin(ng/(2a))

p(¢) = {13)

otherwise.
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The above equation for p effectively gives the interface a
finite thickness a; « is constant for all time while « decreases
at a rate of O(h). A justification for spreading the interface
can be found on page 29 of [29]. Implicit in the above
formula is that ¢ is a distance function. This important point
will be discussed in Section 2.5 below.

The surface tension force is represented by

%K(S(d) n.

As pointed out in [ 16, 8], the surface tension force can be
cast in the level set formulation and smoothed using

(1/B) ké(d)n=(1/B) x(9) 6(¢) V¢,

where the curvature is

<) =55

14
iz (14)

If we maintain ¢ as a distance function, as we shall do, then
we may numerically approximate &(¢} by a mollified delta
function, §,(¢), smoothed in similar fashion as in (25]:

(1 + cos{mg/fa))/a if |9l <a,
0 otherwise.

5.0)={

We denote a as the prescribed “thickness” of the interface. In
our computations, we use x =3 4x.

2.4.1. Inclusion of Surface Tension into the Projection Step

When surface tension is active, special care must be taken
when computing the right-hand side of (8). The contribu-
tion of surface tension to ¥ x (pV) is

S {(K(8) 6B)8,)— (K(8) 6916, (15)

We write 3(¢) as dH(¢)/0¢. Tt follows that we can reduce
(15} to
i

~% (16)

(r() H,—x(¢), H.)).

The equation for H is

f% if ¢>a
- -

H(#)={ —5 if $<—a
l (f.{. l sin(mﬁ/a)) otherwise.
WA -
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{a) t= as0][ (D) i= 3.50

&

L |

CONTOUR FROM -5 TO 5 BY 25 CONTOUR FROM -5 TO 5 By .25

FIG. 1. Level sets of a large water drop; Re = 10.0, Bd = inf,, density
1/1000, grid 50 x 100: (a} reinit; {(b) no reinit.

By writing the surface tension contribution in our
“Heaviside” formulation, we eliminate the numerical
tnstabilities that occur when differentiating a delta function.

2.5, Keeping ¢ a Distance Function

While Eq. (10) will move the level set ¢ =0 at the correct
velocity, ¢ will no longer be a distance function (i.e.,
[Vgl #1). ¢ can become irregular after some period of time
(see Fig. 1 and 2). For example, when two bubbles (or

O

(a)

CONTOUR FROM -5 TO 5 BY 25

i= 8.80

{b)

CONTOUR FROM -5 T 5 BY 25

i= 8.80

FIG. 2. Level sets of rising bubble; Re = 5.0, Bd = 0.4, density 40/1,
grid 64 x 128: (&) reinit; (b) no reinit.
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(a) i= as0][ (b) t= 350

O

FIG. 3. Without surface tension, large drop should deform as it hits
the base; Re =10.0, Bd =inf, density 171000, grid 50 x 100: {a} reinit; {b)
no reinit.

drops) merge, a steep gradient in ¢ will arise between the
bubbles. Also, a drop moving at constant speed will cause a
steep gradient to form in the distance function after a finite
amount of time. Maintaining ¢ as a distance function is
essential for providing the interface with a width fixed in
time. Computation of surface tension is difficult to compute
near a steep gradient in the distance function. The values
for p(¢}, especially for large density ratios, will be greatly
distorted if |Vé$| is far from one. In Fig. 3, we see that

i= 6.80 fb; 1= a.aol

FIG. 4. With large surface tension, bubble should reach ellipsoidal
steady state; Re = 5.0, Bd = 0.4, density 40/1, grid 64 x 128: (a) reinit; (b)
no reinit,

(a)
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t=12.00

t=12.80

t=13.8D

N

t=14.40

]

O

= 6.80

T

O

O

t=11.20

t= 9.60

£=10.40

FIG. 5. Evolution of rising bubble with large surface tension. Bubble
reaches a steady shape and velocity; Re = 5.0, Bd = 0.4, density 40/1; grid
64 x 128.

without reinitialization, the drop loses 41 % of its mass at
time ¢ = 3.5 while mass is conserved with reinitialization. In
Fig. 4, we compare results at time ¢ =8.8 for a gas bubble
rising with large surface tension and viscosity. Without
reinitialization, the bubble loses 19% of its mass and the
velocity does not attain a steady state. Furthermore, the
bubble shape does not attain the characteristic steady state
of an ellipsoid. With reinitialization, the bubble velocity and

area

2.74
—  32x64
o ——-  B4x128
2.58 L - ' L r B 1
.22 3.00 6.00 5.80 12.80 15.80

time

FIG. 6. Convergence test for bubble rising with large surface tension:
mass conservation, Re = 5.0, Bd = 0.4, density 40/1.

.14 ——— T T T e e
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A2x64
I ——- B84x12B
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.28 1.88 .60 5.49 .20 9.98
time

FIG. 7. Convergence test for bubble rising with large surface tension:
velocity steady state, Re = 5.0, Bd = 0.4, density 40/1.

minor axis attain a steady state and the bubble mass is
conserved (see Fig. 5, 6, 7, and 8).

Conventicnal routines for reinitializing a distance func-
tion have to explicitly find the contour ¢ =0 and reset ¢ at
all points close to the front. This takes O{»”) operations (see
[10]) and can distort the front (¢.g., mass loss, corners)
depending on how one reconstructs the shape of the contour

32x64

2.82 — —— B4x128 -

minor axis size

time

FIG. 8. Convergence test for bubble rising with large surface tension:
minor axis steady state, Re = 5.0, Bd = 0.4, density 40/1.
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¢ =0. Through our experiments, we have found that one
needs to reinitiallize ¢ after every time step in order to keep
the solution accurate. Thus any distortions from constantly
reinitializing ¢ are amplified.

An iteration method for reinitializing ¢ was introduced by
[26]. Given a region Q% with ¢ >0 0on 27 and ¢ =0 on
Q2+, evolve the equation ¢, =1—|/V¢| until ¢ reaches a
steady state. If ¢ is already close to a distance function, then
one should not have to evolve too far in time.

Unfortunately, one still has to prescribe boundary condi-
tions on 2% which entails explicitly finding the interface.
We can eliminate the problem of finding the interface.
Consider the following function ¢,(x) whose zero level set is
the air-liquid interface; ¢4(x) need not be a distance func-
tion, however. We shall construct a function, ¢(x), with the
properties that its zero level set is the same as ¢4(x ) and that
¢ is the signed normal distance to the interface. This is
achieved by solving the following problem to steady state

b= S(po)() — /2 + 42)
B(x, 0) = po(x),

(17}
(18)

where S is the sign function. For numerical purposes it is
useful to smooth the sign function; we do this as

do
VOE+El

Equation (17} has the property that ¢ remains unchanged
at the interface; therefore the zero level set of ¢, and ¢ are
the same. Away from the interface ¢ will converge to
[V@| = 1. Therefore, it will converge to the actual distance.
The above algorithm completely avoids finding the interface
and it proves to be efficient to implement numerically. In
our computations, one iteration per time step was usually
enough for meeting our convergence criterion. In [26],
existence and uniqueness proofs are provided for the
problem:

Sddo) = (19)

Yo(x)|=Ax) inf2*
[Vé(x)| = Ax) 20)
P(x)=0 ondE+,
In our case A(x}=1.
2.6. Summary

We can now summarize our algorithm.

Step 1.
the front.

Step 2. Solve

Initialize ¢(x, 0) to be signed normal distance to

u, =P, u), d,+u V=0

S81/114/1-11
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for one time step with p(¢) given by (13), u(¢) given by (12),
and the surface tension force given by {16). Denote the
updated ¢ by ¢ /2, and the updated u by u"* 1.

Step 3. Construct a new distance function by solving

¢, = S+ (1 — V()] with  ¢(x, 0} = P+ 12)x)

to steady state. We denote the steady state solution by
¢(n+1)'

Step 4. We have now advanced one time step. The zero
level set of ¢+ 1! gives the new interface position and ¢+ "
is a distance function. Repeat Steps 2 and 3.

3. DISCRETIZATION

A staggered mesh will be used for the velocity and the
distance function. With & as the mesh size, we define

X ;= ((i+ %)h: (J+ %)h)

u,  =u(x; ;)

¢f,j=¢(xi,j)
i=0...M-—1
j=0---N—-1

For a square box, we have MA=T7TR and Nh=7R. For a
rectangular box, we have Mh=35R and Nkh={0R.
3.1. Discretization in Time
We will use a second-order Adams—-Bashforth method for

evolving the equation in time (see [181),

u = w L k(2P (Lu") — 1P (L)), (21)

where k is the time step. A similar formula as above is used
in discretizing the equation for ¢,

3.2. Convection Terms

We will use a second-order ENO method for the
approximation of the convective terms. For w divergence
free, we have

(u- V)¢ ={(up), + (v¢), (22)
(u-Viu=f, +g, (23}
where
u? u
) o)
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For a conservative scheme, we approximate f, using
fivip,—fio\p. Unfortunately, there are unwanted
oscillations since (23} is not always numerically accurate.
We will use an algorithm similar to that of Eq. {2.9)in [5].
For the equation for ¢, we have

(ug) ., + (vg},
2 ((U9) 412, — (U8} vz
+(v8)i 12— (V@) _ 1M/ (2R)
=ty ypr ;Wi ipg HPriw 12— i 12 )(2h)
+ (0, st V10 B2~ B j—12)/(2R)
H{Bivrpp;t Oimrp, g — Uiz, 1(2R)
(@ 1zt P o120 0s s 12— Uiy 12)/(2R)

For Sn’lOOth data, we have ¢i+ 1/?-] + ¢i— lﬂ,jz ¢j‘j+ 1/2 +
¢; ;1. Since w is numerically divergence free, we have
We find the

Wy 2 j— Uicap ;= _(Ui.j+ 12~ Vi - 1/2)-
following approximation

(ug), + (v9),
R Uy v+ Ui 1o N biern— i1, )(2hH)
+(v 12tV 12 i1 — @i ;1,21 (2h).

Similarly we have

(S1)+(81),
XU 1205 F et |/2,j)(“i+ 12, " Hi— 12,5/ (2h)

H(v sz 0 1o 1 p— U 1)/ (2R)

(2 + (&),
(U Uy, KO, — Vim i, Y 20)

F (0 20 1o KU 12 — Vi 12)/(2H).

For computing u,, , ; (similarly for w,;,1p, 6.\ 1.5 )
we use a second-order ENO scheme (see [ 28, 23]):
Define

a if |a|<|d]

b otherwise.

mia, b)= {

Let

_ 1
up =, s i~ gt — U )

= 1 ( _ _
UHp=U;, ;=M U ;— Uip Uiy u;.j)

upe =31+ ug).
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We now have

U if u;<0andup=0
Uip1p, =8 Ur if upy<landup,<0
Uy if u,=0andu,=0.

3.3. Viscous and Curvature Terms

We approximate the components of the viscous stress
tensor D using central differencing:

{uc)is 12,5+ 1/2 = (U; ., Lt iy e~ — ui,j+1)/(2h)
(,); 4 172, j+12 % (Uigq 1 — Uiy Lt 8 e —u; )(2h).
Similar equations are used for v, and v,

The divergence of the stress tensor is computed as
follows:

((#D™) )i 5
(D™ )i T HD™ o1
—(D™")iap g = (DT 12 o1 0} (2R)
((eD™")),
RA(UD™"Y 11250 12— (D™ 1o s 12
D™ i sere — D™ 21 o 12)/(2R)
with

i v =Mt My F M 1 F i L+ /A

We use the free-slip condition (5) to determine the
discretization at the left boundary. For example,

(10,) _vp2, 5 12 = 2+ g 4 1)/ (2H)
K12, j+12= (#o,; + Ho, j+ /2.
Similar equations are used for the other boundaries. The

curvature is discretized in the same fashion as the discretiza-
tion of the divergence of the viscous stress tensor.

3.4. Discretization of the Projection

Given V=Lv", we decompose V into the form V,+
Vi/p, where V , is divergence free and define P (Lu")=V,
and Vp" = V. Following [ 5], in order to define the discrete
approximation of the projection, we must first define
discrete divergence and gradient operators and a discrete
p-weighted inner product.

For divergence we have

(V-U)ivrz 41
~ (DU).-+1/2.1'+ 172
S(Mipr, o1 — M F i —u )(2h)

F (i 01— Vgt U is —U;,,-)/(Zh)-
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For the gradient we have
(VP), ;= (GP), ;= ((G, D), ;, (G, D), ;)
(G, D).,

I

(Pivrpivin—Picizi+12
TP i—12—~Pisiz, ;- 12)/(20)
{(G,2) ;=P ipjirn— Pivipg-ipn
+ @ 1z — Pioip—12)/(2h)

For the inner product we have

M—-1 N-1

(v, Vz)pE Z Z (Vl,y‘vz.g)sz

i=0 j=0

Note. The divergence operator and ¢ are defined at the
cell corners X;, 2 412, Where i=—1...M—1 and j=
—1-.-N—1.

With the above definitions for D and G, the discrete
operators are skew adjoint (G= —DT; see [5]). Using our
definitions of G, D, and (-, -),, discretely divergence free
vector fields with zero normal components are orthogonal
to discrete vector fields of the form G&/p. Consequently, we
can uniquely decompose any discrete vector field into
U+ G&/p, where DU =0.

In two dimensions, a divergence free vector can be written
as the curl of a vector ¥ =(0, 0, ¥) (see pp. 77-78 of [3]).
Define a discrete function ¥ at the cell corners X, 15 ;4 1/2-
Since our divergence free wvector field has zero normal
component at the boundary, ¥ =0 at the boundary (i= —1,
M—1orj= —1, N—1). Define G1W as the discrete curl of
W;eg, G*¥=(G,¥, -G, ¥). Then we have

G Y +Gy/p=V (25)
G (pG-¥)=GH{(pVY) {26)
—G (G ) -G (p(G, ¥ =G (pV) -G (pV)). (27)
When surface tension is active, we modify the right-hand
side of (27) using our Heaviside formulation (16). The
difference formula for {27} is
—Lpi;¥icipiet P ¥icipivan
+oi1 ¥ iani—nt P Visan e
— (PPt P FPige1) s o]
= Gx(Pvz) - Gy(pvl)

”IE (G.x(¢) G, H—G,k($} G H),

where V is V with the surface tension terms excluded.
Once ¥ is known, we can set U= G1%¥. The matrix
system is solved using a preconditioned conjugate gradient
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(PCG) algorithm using an incomplete Cholesky factoriza-
tion as a preconditioner. The initial data for the PCG
algorithm is a linear combination of the results of previous
time steps.

3.5. The Reinitialization of ¢

In this section, we describe how to numerically evolve
(17) to steady state. We can write (17) in the form

¢, +w- Vg =S5(do), (28)

where

w=S(do )} V¢/| V).

Equation (28) is a nonlinear hyperbolic equation whose

characteristics are given by w. The vector w is a unit normal

always pointing outward from the zero level set (¢ =0).
One possible discretization of (17) is as follows. We define

a=D_¢, ;={¢.;,— i1 ;)
b=Di¢,;=($ir1,— 9. )k
c=D, ¢, ;= ;,— ¥,k
d=D/¢, ;= (¢, jr1— ;. )/h

and

Se(¢)r‘.j=¢i,j/m?

Jmax((a*)?, (b)) +max((c )2, (d)F) -1
if ¢7,>0

\/rnax((a‘)z, (b)) +max({c”)% (d*))—1
if ¢),<0

0 otherwise,

G(¢)i,j=

where the + superscript denotes the positive part and the —
superscript denotes the negative part. Equation {17) is then
updated using
Y =) — At S (7)) G($Y). (29)
It is shown in [26] that (29) is a consistent, monotone
scheme of (20), which is known to converge to the unique
viscosity solution of (20). If ¢° > 0 and G(¢°) < 0, then [26]
proved that ¢ » implies G(¢) ». An extension of this can
easily be deduced for ¢% < 0. If ¢° <0 and G(¢°) <0, then
¢~ implies G(¢) ~. So, if G(¢*) <0 and if 41 is sufficiently
small, then G(¢¥) » 0 as N — co. This follows from the fact
that as long as G(¢™) <0, then ¢" < ¢~ *' for ¢ >0 and
¢N2¢N+l for ¢N-<~.O
While (29) has the advantage of being a monotone
scheme, it has the disadvantage of being only first order. We
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observed a significant improvement in our results by
approximating the derivatives of ¢ by higher order schemes.
In our tests, we used a second-order ENO scheme upwinded
in the proper direction {see [ 28]). As mentioned previously,
we typically needed only one iteration per time step in order
to meet our convergence criterion. We have also done tests
where ¢ was initialized as + 1 outside of a unit circle and —1
inside of a unit circle and our iteration converged success-
fully.
The stopping criterion for the iteration 1s

Z|¢f;1<x |¢’?{;+l _¢fvj|

r
M

< Ath?,

where M = number of grid points where |¢} ;| <a In our
experiments we had Ar=~Ah/10 and we used £¢=*h in the
expression for §,.

3.5.1. Computation of At

The time step must obey the CFL conditions due to the
convective terms. Restrictions due to stiff source terms (e.g.,
gravity and surface tension), and due to viscous terms must
also be satisfied (see (6.3) of [23] and (61) or [8]):

AIJE'V (Pc'{'Pb)B/‘thsﬂ

3
Atvzmﬂin (ﬁ(p(Re)hZ/u))

()
At =min | —
e \|u|

At =—min(dr,, At d¢,).

1
2

4. ANALYSIS OF RESULTS

Our experiments simulate the flow of air bubbles and
water drops. We will assume that the flow is two-dimen-
sional and symmetric about the axis x=0. The key
parameters are density ratic p./p,, viscosity ratio g /u,,
Bond number B=4p, gR?/o, and Reynolds number Re =
(2R)*" \/g p./u,. For the bubble problems R =2.5 cm and
for the drop problems R =0.125cm. Using the tables
in [3], we have p, =1226x10"3g/em® puue =
1.000 g/em®, . =1.78x 107 * g/(cms), pyuer = 1.137 %
1072 g/(cm s), g = 980 cm/s%, and ¢ = 72.8 dynes/cm. These
physical constants are used in determining the above
parameters.

4.1. Convergence Study

We consider two rising bubble problems. The first
problem is a bubble rising with medium range Reynolds

SUSSMAN, SMEREKA, AND OSHER

£

t=440 || (b)

£

t= 440 || (c)

e

t= 4.40

(a)

FIG. 9. Convergence test for bubble rising with medium range
Reynolds number and small surface tension; Re=100.0, Bd=200.0,
density 1000/1: (a) 36 x 36; (b} 72x 72; (c) 144 x 144

number and small surface tension. The second problem is a
bubble rising with low Reynolds number and high surface
tension. We let the second bubble rise to a steady state.

For the first test, we have B=200.0, Re =100.0, p/p, =
1000.0, and g /u,=100.0. Grids of 36 x36, 72 x 72, and
144 x 144 are used. The number of time steps for each of the
respective grids is 734, 1467, and 2934. We compare results
up to time r=44 (see Fig. 9 and 10). We compute the
relative error between successive grids as

44

Ey o= z | fo— faul.

t=00

Table I contains values for the position and velocity of the
center of the bubble. Table I also contains relative errors for
minor axis size and area. Figure 11 compares the position of
the center of the bubble.

N D T
0 0 0 0 0 0
i= 5.20 t= 5.60 t= 6.00
Y| S
t= 4.00 t= 4.40 t= 4.80
|
t= 2.80 i= 3.20 t= 3.60

FIG. 10. Evolution of rising bubble with medium range Reynolds
number and small surface tension; Re = 100, Bd = 200, density 1000/1, grid
144 x 144,
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TABLE 1
Convergence Study: 1 =4.4

Es Eyp i Order
Position 0.01 0.05 2.3
Velocity 0.02 0.07 1.8
Area 002 a.l6 340
Miner axis 0.04 0.12 16

For the second test, we have B=040, Re=350,
2./p, =400, and g /u, =500. Grids of 16 x 32,32 x 64, and
64 x 128 are used (see Fig. 5). The bubble reaches a steady
where its oblate shape is the expected result (see [29],
p. 31). The area, velocity, and minor axis are each plotted
with respect to time (see Fig. 6, 7, and §).

4.2. Analysis of Air Bubble Problem

4.2.1. Effects of Surface Tension

We study the effects of adding surface tension to the rising
bubble problem where Re =100.0. In Fig. 12, we compare
the results with Bond number of 200.0 (a) to that of
Bd =250 (b). The change in shape is similar to that found
in [21] (experiments using the boundary integral method),
where the bubble skirts become thinner and the indentation
at the bottom flattens out.

3.13 ﬁ . ; . ; . : -
o
L 7
2.58 / .
1.88 -1
&
2 L
1]
[=]
=}
1.25 - _
@.63 | =
36x36
o — - 72xT2
———— l44xi44
?.08 1 1 L 1 L L] 1 ]
0.09 .88 1.76 2.64 3.52 q.40

time

FIG. 11. Convergence test for bubble rising with medium range
Reynolds number and small surface temsion: position, Re=100.0,
Bd = 200.0, density 1000/1.
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t= 4.00

(a)

| (b} 1= 400

FIG. 12. Surface tension effects on bubble rising with medium range
Reynolds number; Re=100, density 1000/1, grid 72x72: (a) Bond
number 200.0; (b) Bond number 25.0.

4.2.2. Effects of Viscous Terms

We compare the results of Fig. 13 (Re=10.0), Fig. 10
(Re=100.0), and Fig. 14 (Re=1000.0). The change in
shape due to low Reynolds number is similar to that found
in the experiments of [ 7] (see Fig. 3 of [7]). The results for
high Reynolds number flow compares well to the results in
[2]. In [2], the authors computed the solution until pinch
off (+=4.0) of an inviscid gas bubble. They used both the
boundary integral method and the point vortex method and
obtained almost identical results using those methods. The
fact that our results using an Eulerian grid are also very
close to the above Lagrangian schemes validates our code
for high Reynolds number and for steep density ratios.

-

)

t= 4 80 t= 5.20 L= 5860
t= 3.60 t= 4.00 t= 4.40

()

t= 320

(~)

t= 280

N

t= 2.40

FIG. 13. Evolution of rising bubble with low Reynolds number and no
surface tension; Re = 10.0, Bd = inf, density 1000/1, grid 72 x 72.
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9 o

t= 5.20 t= 5.60 t= 8.00
(=4 =
0 O

t= 4.00 t= 440 t= 4.80

1= 2.80 t= a.20 1= 360

FIG. 14. Evolution of rising bubble with high Reynolds number and
low surface tension; Re = 1000, Bd = 200, density 1000/1, grid 140 x 140,

£

£

t= 5.20 t= 5.60 t= 8.00
t= 4.00 t= 440 t= 4.80
t= 2.80 t= 3.20 t= 3.80

FIG. 15. Evolution of rising bubble with low density ratio
medium range Reynolds number; Re= 100, Bd =inf, density 5/1, grid

72x 72

and

(Ecs ’05) Y, ) O Y
t= 6.0C t= 6.80 t=7.20
t= 4.20 t= 4,80 t= 5.40
t= 240 t= 3.00 t= 3.60

FIG. 16. Evolution of rising bubble with slight density ratio
medium range Reynolds number; Re = 100, Bd = inf, density 1.01/t, grid

140 % 140.

density 1000/1

———- density 5/1 4
———— density 1.1/1

5]

o)

=

3]

2

3

>
2.
-2.12
-2.59

0.208 1
FIG. 17.

Bd = inf, grid 50 x 100.

Effects of density ratio on

.26 2.52 3.

time

78 5.04

bubble rise velocity; Re =100,

and



LEVEL SET APPROACH IN TWO-PHASE FLOW

amplitude

-2.8%

-2.83

-0.25

0.2

FIG. 18, Amplitudinal oscillations of a two-dimensional drop driven
by surface tension forces. Amplitude decays exponentially due to viscosity;

time

Re = 20, Bd = 1/2, density 1/100, 4 =0.07.

g.17

O

O

i= 350 1= 4.00 t= 4.50 L= 5.00
t= 1.50 t= 2.00 i= 2.50 t= 3.00

O

O

FIG. 19. Evolution of a large water drop (no sutface tension). Drop
deforms as it hits the base; Re = 10, Bd = inf, density 1/1000, grid 50 x 100.

157

O

O

O

t= 3.50 t= 4.00 t= 4.50 t= 5.00
t= 1.50 t= 2.00 t= 2.50 t= 3.00

O

FIG. 20. Evolution of a water drop with surface tension. Drop remains
circular as it hits the base; Re=10, Bd = 1/800, density 1/1000, grid

50 x 100,

position

-2.50

-2.508

FIG. 21.

1.40

2.18

time

Re = 10, Bd = 1/800, density 1/1000, grid 50 x 100,

3.5¢

Position of water drop with surface tension versus time;



158

O] d

t= B.0O t= 8.50 i=8.00 t= 9.50
t= 6.00 t= 6.50 t=7.00 t= 7.50

CO|CDO | CO|CD

t= 4.00 t= 450 t= 5.00 t= 5.50
t= 2.00 t= 2.50 t= 3.00 t= 3.50

FIG. 22. Evolution of two water drops colliding with each other.
Combined drop experiences surface tension driven oscillations; Re =20,
Bd =20, density 1/14, grid 44 x 44,

4.2.3. Effects of Different Density Ratios

We compare the results of Fig. 10 {p,/p, = 1000.0) to that
of Fig. 15 (p./p,=50). The shape of the bubbles are
similar, except that the skirts on the low density-ratio
bubble are allowed to grow longer than those on the high
density-ratio bubble. The pinch-off time 1s 4.5 for the high

7.e8 T T T T T T T T

6.5 -~ T

areca

5.50 -

4.5@ 1 1 i 1 L 1 I 1
p. 28 3.0 6.80 9.00 12.908
time

15. 29

FIG. 23. Conservation of mass for colliding drop problem; Re =20,
Bd = 2.0, density 1/14, grid 44 x 44.
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density-ratic bubble and 5.6 for the low density ratio
bubble. We also compare the above results to that of
Fig. 16. For slight density ratios, the skirts of the bubble
begin to roll up (see [1]). In Fig. 17, we plot the velocity of
the bubble for different density ratios.

4.3. Analysis of Water Drop Problems

We consider three problems in 2D flow. The first problem
is a stationary drop that is driven by surface tension. The
second problem is a drop that is allowed to fall from rest
and hit the bottom of our closed box. The last problem
involves two drops which are propelled towards each other
and allowed to collide. .

For the first problem, we compute the frequency of
oscillations due to surface tension driven flow (see Fig. 18).
We compare our results to that which is predicted by [ 19],
p. 472, (Eq. (8)). We have Re=20.0, 8=0.5, p_/p, =001,
B, =001, a=10, A =006, s=2, and dx=0.07. “4” is
the amplitude of the initial perturbation, “s” is the distur-
bance type, and “a” is the base radius of the drop. Our
computed period of 1.92 agrees closely with the result
predicted by the formula 2r/z {1.81), where 62 =6/B.

For the second problem, we study the flow of a falling
water drop. We refer the reader to Figs. 19 and 20. When the
required surface tension is added, we obtain the expected
circular shape. We compare our results (R=0.125cm, B=
0.00125, Re=10.0) to that of [22] (R=0.140cm). Our
results are similar to those of [22). The added surface
tension prevents the drop from “flattening out” near the
lower boundary. Figure 21 displays the position of the drop
versus time, The average acceleration was 0.95 (5% error).

For the last problem, we study the head-on collision of
two water drops in the absence of graviational forces (see
[ 24, 13]). We refer the reader to Fig. 22. The two drops are
each accelerated at each other with a body force of 0.5. After
time ¢ = 2.0, when the drops are traveling with a non-dimen-
sional velocity of about 1.0, the force is turned off. Mass is
conserved throughout the collision (see Fig. 23). After the
collision, the combined drop undergoes oscillation due to
the surface tension forces (Re=20.0, Bd=2.0). As with
bubble pinch-off above, our level set formulation enables us
to merge the two drops without any extra programming,

5. CONCLUSIONS

In summary, we have designed a formally second-order
accurate algorithm for tracking the interface of two incom-
pressible fluids. The interface remains sharp (p,./p, = 1000)
without ever having to explicitly find the front. As in [29],
the front is given a finite thickness O(h) which does not
change in time; hence there is no added numerical diffusion.
Since we solve a PDE for ¢ (ensured to be a smooth distance
function for all time) instead of for p, relatively coarse grids
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can be used. The algorithm is easy to code since the initial
Eulerian grid remains the same throughout simulation.
There is no extra code needed for handling merging, break-
up, dilation, or contraction of the interface. Since the algo-
rithm does not have to explicitly find the interface, the code
can be easily generalized to three dimensions. Furthermore,
surface tension is incorporated as a body force term which
is easy to compute. Because of the special treatment of the
convective terms, the algorithm can accurately handle high
Reynolds number flow. In the future, we would like to
generalize the algorithm to bandle axisymmetric flow, for
computations involving spherical bubbles as well as cylin-
drical bubbles. Furthermore, we would like to simulate fully
three-dimensional problems involving many bubbles and
drops which can interact with each other. Finally, we would
like to simulate flow involving several {>2) immiscible
fluids using the work of [ 6].
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